
Performance portability,
fault tolerance, and

accelerators - oh my!
Simon McIntosh-Smith

HPC Research Group
simonm@cs.bris.ac.uk

1 Twitter: @simonmcs http://uob-hpc.github.io

2

3

4

 Bristol's long HPC history

5

 What does my group do?
•  Performance portability

•  Programming model evaluations
•  Code design strategies
•  Hardware evaluations
•  "Cross-X", where X = vendor, language, …

•  Fault tolerance
•  Application-based fault tolerance
•  Reliable computing on unreliable hardrware

6

 PERFORMANCE
PORTABILITY

7

 BUDE – MOLECULAR
DOCKING (2013)

8

 What is BUDE?
•  Bristol University Docking Engine

•  Dr Richard Sessions, PI (Biochemistry)
•  Designed for true in silico virtual drug screening by

docking
•  Employs a genetic algorithm-based search of the

six degrees of freedom in the arrangement of the
protein and drug molecules to reduce the search
space

•  Uses a tuned empirical free-energy forcefield for
predicting the binding pose and energy of the
ligand with the target protein

9

 BUDE protein-ligand docking

10

 What did we do?
•  Started with OpenCL

•  Supported by all the major vendors (even Nvidia!)
•  Wasn't anything else that let us try cross-vendor,

cross-hardware at the time
•  Ninja level programming

•  Optimised initially for the most parallel device
we had

•  Kept checking that the optimisations weren't
making things worse on the other devices

11

 More specifically…
•  Ported all the code to the accelerator
•  Helped the compiler turn all the conditional

branches into straight-line, predicated
code
•  Involved eyeballing the generated PTX

•  Did all the usual things to optimise
memory accesses
•  Alignment, padding, coalescence etc.

•  Chose sensible problem/work-group sizes

12

 Optimising conditional branches
Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
 acc += (a - b*c);
}

Corresponding PTX

setp.gt.f32 %pred, %a, %b
@!%pred bra $endif
mul.f32 %f0, %b, %c
sub.f32 %f1, %a, %f0
add.f32 %acc, %acc, %f1
$endif:

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

Corresponding PTX

mul.f32 %f0, %b, %c
sub.f32 %temp, %a, %f0
setp.gt.f32 %pred, %a, %b
selp.f32 %mask, %one, %zero, %pred
mad.f32 %acc, %mask, %temp, %acc

13

 Instruction mix

14

 Target hardware

15

 BUDE results

16

"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014
DOI: 10.1177/1094342014528252

 How much the optimisations helped

17

"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014
DOI: 10.1177/1094342014528252

 Performance portability

•  BUDE was highly performance portable
•  Compute intensive, N-body / Monte Carlo

•  Bandwidth intensive codes next
•  Structured grid codes:

•  CloverLeaf (hydrodynamics)
•  ROTORSIM (CFD)
•  Lattice Boltzmann

18

 STRUCTURED GRID CODES
(2013)

19

CloverLeaf: A Lagrangian- Eulerian
hydrodynamics benchmark
•  A collaboration between AWE, Warwick & Bristol
•  CloverLeaf is a bandwidth-limited, structured grid

code and part of Sandia's "Mantevo" benchmarks
•  Solves the compressible Euler equations, which

describe the conservation of energy, mass and
momentum in a system

•  These equations are solved on a Cartesian grid in
2D with second-order accuracy, using an explicit
finite-volume method

•  Optimised parallel versions exist in OpenMP, MPI,
OpenCL, OpenACC, CUDA and Co-Array Fortran

20

CloverLeaf benchmark parameters

•  Double precision grid of size 1920×3840
•  �7.4m grid points, 25 values per grid point
à�1.5 Gbytes in working dataset

•  The OpenCL and CUDA parallelisations
were performed in an identical manner
•  One work-item/thread for each grid point
•  Identical arrangements for work-group sizes

and layouts
•  E.g. 2D work-groups of (128, 1) for OpenCL

21

 Results – performance

22

S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

8.1X

3.7X

6.1X

1.9X

 Results – sustained bandwidth

23

S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

48%

54%

24

Performance portability isn't what we expect

But why not?

 Why don't we expect perf. portability?

•  Historical reasons
•  Started with immature drivers
•  Started with immature architectures
•  Started with immature applications

•  But things have changed
•  Drivers now mature / maturing
•  Architectures now mature / maturing
•  Applications now mature / maturing

25

 (Ninja level) performance portability
techniques

•  Use a platform portable parallel language

•  Aim for 80-90% of optimal

•  Avoid platform-specific optimisations

•  Most optimisations make the code faster
on most platforms

26

 HIGHER-LEVEL
PERFORMANCE
PORTABILITY (2014-)

27

 Moving on up
•  Low-level programming in OpenCL or

CUDA is all very well …
•  ... But we don't expect most scientific

codes to be re-written in these languages

•  What are the emerging options?
•  Directive-based: OpenMP 4.x, OpenACC,

OmpSs, ...
•  C++ based: RAJA, Kokkos, SYCL, ...

28

29

DOE performance portability workshop, Arizona, April 2016.

TeaLeaf – Heat Conduction

30

•  Implicit,	sparse,	matrix-free	solvers	
on	structured	grid	
•  Conjugate	Gradient	(CG)	
•  Chebyshev	
•  PrecondiAoned	Polynomial	CG	(PPCG)	

• Memory	bandwidth	bound	
• Good	strong	and	weak	scaling	on	
Titan	&	Piz	Daint	

•  Mini-app from Mantevo
suite of benchmarks

 The Performance Experiment
•  Performance	tested	on	CPU,	GPU,	and	KNC	

•  Single	node	only	(mulA-node	scaling	proven)	

•  All	ports	were	opAmised	as	much	as	possible,	
while	ensuring	performance	portability	

•  Solved	4096x4096	problem,	the	point	of	
mesh	convergence,	for	single	itera0on	

31

TeaLeaf - CPU

32

At most 12% runtime penalty for modern Intel CPU

TeaLeaf – Power8

33

Performance bug often seen with CG solver

Results generally good, particularly for optimised versions

TeaLeaf – GPU

34

Performance bug with CG again present in some cases

All models get to within 25% of OpenCL / CUDA

TeaLeaf lines of code

35

TeaLeaf conclusions
•  RAJA and Kokkos both looking promising

•  For GPU (NVIDIA) and CPU (Intel, IBM)
•  What about other architectures though?

•  AMD GPUs, ARM CPUs, …
•  Big question is: who maintains these in the

long-term?

•  OpenMP 4.x also looking good for GPUs
•  Still lots of Fortran out there

36

 HARDER APPLICATIONS:
TRANSPORT (2014-)

37

 Transport: SNAP mini-app
•  Neutral particle transport code from LANL
•  Performance proxy for production code PARTISN
•  Discretization

•  Finite difference in time
•  Finite difference in space
•  Multi-group in energy
•  Discrete ordinates in angle

•  Solution
•  Matrix free, structured grid
•  Simple iterations on scattering source (RHS of equation)
•  Jacobi iterations in energy

•  Generates a sweep across the spatial mesh
•  Can’t compute in all cells all at once like your other favourite

PDEs!

38

 Making SNAP fast
•  Weren't any really fast GPU ports of SNAP
•  The wavefront dependencies make it hard

to parallelise

39

 A Many-core Implementation

40 © Simon McIntosh-Smith

•  Need to solve for each
cell, for each angle and
for each energy group

•  We exposed all the
different levels of
parallelism in one node:
•  Cells in the wavefront/

hyperplane
•  Angles in the octant
•  Energy groups

•  This is the first time GPUs
outperformed CPUs for
deterministic transport

Expressing Parallelism on Many-Core for Deterministic Discrete Ordinates Transport.
Deakin, T., McIntosh-Smith, S., & Gaudin, W. (2015).
International Workshop on Representative Applications (WRAp), IEEE Cluster, Chicago, USA.

 New SNAP results

41
Expressing Parallelism on Many-Core for Deterministic Discrete Ordinates Transport.
Deakin, T., McIntosh-Smith, S., & Gaudin, W. (2015).
International Workshop on Representative Applications (WRAp), IEEE Cluster, Chicago, USA.

42

 Performance portability too

Expressing Parallelism on Many-Core for Deterministic Discrete Ordinates Transport.
Deakin, T., McIntosh-Smith, S., & Gaudin, W. (2015).
International Workshop on Representative Applications (WRAp), IEEE Cluster, Chicago, USA.

43 © Simon McIntosh-Smith

��

���

����

����

����

����

�� �� ��� ��� ���� ����� ����� ������

��
�
��
��
���
���
�
��
���
��
��
��
�

�����

�����
���������������������������������������

���

�������
������������
���������
���������

•  4X speedup using the GPUs
•  Models line up well with experimental results: within 20%
•  Titan network struggling: 84% time in communication at 8192 MPI ranks

Original SNAP on CPUs

Original Model

Our SNAP on GPUs

44 © Simon McIntosh-Smith

���

���

���

���

���

���

���

�� �� ��� ��� ���� ����� �����

��
�
��
��
���
���
�
��
���
��
��
��
�

�����

���������
���������������������������������������

���

�������
������������
���������
���������

•  2X speedup using the GPUs - CPUs much faster than in Titan
•  Models line up well with experimental results: within 12%
•  Better network helps transport: less time in comms than Titan’s Gemini torus

 Performance portability summary
•  It is possible to achieve performance

portability for hydrodynamics, diffusion and
transport
•  At least for current CPUs and GPUs
•  Harder for the next generation though

•  Memory hierarchy, degree of parallelism per node, …

•  Performance portability should be getting
easier to achieve with higher-level
abstractions
•  RAJA, Kokkos all looking promising
•  OpenMP 4.x also delivering good results

45

 Performance portability refs
•  On the performance portability of structured grid codes on

many-core computer architectures
S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price
ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

•  Assessing the Performance Portability of Modern Parallel
Programming Models using TeaLeaf
Martineau, M., McIntosh-Smith, S. & Gaudin, W.
Concurrency and Computation: Practice and Experience (April
2016), to appear

•  Expressing Parallelism on Many-Core for Deterministic Discrete
Ordinates Transport
Deakin, T., McIntosh-Smith, S., & Gaudin, W.
International Workshop on Representative Applications (WRAp),
IEEE Cluster, Chicago, United States. Sep 2015.
DOI: 10.1109/CLUSTER.2015.127

•  https://github.com/UoB-HPC/

46

 FAULT TOLERANCE

47

 Top 10 Exascale challenges

48

Top ten exascale challenges
1. Energy efficiency: Creating more energy-efficient circuit, power, and

cooling technologies.
2. Interconnect technology: Increasing the performance and energy

efficiency of data movement.
3. Memory technology: Integrating advanced memory technologies to

improve both capacity and bandwidth.
4. Scalable system software: Developing scalable system software that is

power- and resilience-aware.
5. Programming systems: Inventing new programming environments that

express massive parallelism, data locality, and resilience
6. Data management: Creating data management software that can handle

the volume, velocity and diversity of data that is anticipated.
7. Exascale algorithms: Reformulating science problems and redesigning,

or reinventing, their solution algorithms for exascale systems.
8. Algorithms for discovery, design, and decision: Facilitating

mathematical optimization and uncertainty quantification for exascale
discovery, design, and decision making.

9. Resilience and correctness: Ensuring correct scientific computation in
face of faults, reproducibility, and algorithm verification challenges.

10. Scientific productivity: Increasing the productivity of computational
scientists with new software engineering tools and environment

9

February 2014

Top ten exascale challenges
1. Energy efficiency: Creating more energy-efficient circuit, power, and

cooling technologies.
2. Interconnect technology: Increasing the performance and energy

efficiency of data movement.
3. Memory technology: Integrating advanced memory technologies to

improve both capacity and bandwidth.
4. Scalable system software: Developing scalable system software that is

power- and resilience-aware.
5. Programming systems: Inventing new programming environments that

express massive parallelism, data locality, and resilience
6. Data management: Creating data management software that can handle

the volume, velocity and diversity of data that is anticipated.
7. Exascale algorithms: Reformulating science problems and redesigning,

or reinventing, their solution algorithms for exascale systems.
8. Algorithms for discovery, design, and decision: Facilitating

mathematical optimization and uncertainty quantification for exascale
discovery, design, and decision making.

9. Resilience and correctness: Ensuring correct scientific computation in
face of faults, reproducibility, and algorithm verification challenges.

10. Scientific productivity: Increasing the productivity of computational
scientists with new software engineering tools and environment

9

February 2014

 FP7 Mont Blanc project

Build a supercomputer from mobile
processor technology – is it more energy
efficient?
•  Project running since Oct 2011
•  €16m total EU funding for 6 years
•  14 project partners
•  Several prototype machines so far

49

http://www.montblanc-project.eu/

50 Project review - P17 Barcelona, 6th November 2014

Mont-Blanc2 consortium

 Mont Blanc compute card

51

No ECC!

 Fault tolerance & resilience
•  All handled by the hardware, right?
•  No free lunch anywhere anymore…
•  Consider "simple" ECC on external DRAM

•  Single Error Correct Double Error Detect
•  Uses an extra 8 parity bits per 64 data bits
•  12.5% more memory, bandwidth, power, …
•  Expensive, slow mechanism when an

uncorrectable error occurs
•  Invoke OS, checkpoint/restart sequence, …

52

 Checkpoint/restart
•  But if ECC doesn't catch the error,

checkpoint/restart solves the problem,
right?

53
Time

Total DRAM

Data you need
to save/restore

Bandwidth to storage In
cr

ea
se

 Application-Based
Fault Tolerance (ABFT)

Lots of good progress being made in:
•  Sparse linear algebra (this work)
•  Dense linear algebra
•  Monte Carlo
•  Structured / Unstructured grids
•  N-body
•  Spectral (FFT)

54

 Sparse matrix compressed formats

•  Sparse matrices are typically mostly 0
•  E.g. in the University of Florida sparse

matrix collection (~2,600 real, floating
point examples), the median fill of non-
zeros is just �0.24%

•  Therefore stored in a compressed format,
such as COOrdinate format (COO) and
Compressed Sparse Row (CSR)

55
The University of Florida Sparse Matrix Collection, T. A. Davis and Y. Hu,
ACM Transactions on Mathematical Software, Vol 38, Issue 1, 2011.

 COO sparse matrix format

•  Conceptually think of each sparse matrix
element as a 128-bit structure:
•  Two 32-bit unsigned coordinates (x,y)

•  One 64-bit floating point data value

56

x-coord y-coord 64-bit value

0 31 32 63 64 127

 Software ECC protection for
sparse matrix elements

•  Remember that most sparse matrices don't
use all their index bits

•  Observation: This leave index bits that could
be "repurposed" for a software ECC scheme

•  A software ECC scheme might save
considerable energy, performance and
memory (all in the region of 10-20%)

57

 COO sparse matrix format

•  Using 8 bits of the 128-bit compound element would
allow a full single error correct, double error detect
(SECDED) scheme in software

•  Use e.g. 4 unused bits from the top of each index
•  Limits their size to "just" 0..227 (0..134M)
•  With 64-bit indices, even more spare bits we can use

•  Requires no more bandwidth, just more compute
•  Actually saves the 12.5% ECC bandwidth…

58

x-coord y-coord 64-bit value

0 31 32 63 64 127

 Software-based ECC Results

Scheme Bits needed x86 overhead ARM32 overhead ARM64 overhead
Constraints 0 1.00x 1.07x 1.03x
SED 1 1.01x 1.28x 1.10x
SEC 7-bit 7 2.61x 4.27x 2.25x
SEC 8-bit 8 1.04x 1.48x 1.13x
SECDED 8 2.49x 4.79x 2.33x

This is looking very promising!

•  Next, implement on a GPU
•  Compare with/without ECC hardware

enabled

 Fault tolerance conclusions
•  Fault tolerance / resilience is set to

become a first-order concern for
Exascale scientific software

•  Application-based fault tolerance (ABFT)
is one promising technique to address this
issue

•  ABFT can be applied at the library-level
to help protect large-scale sparse matrix
operations

60 Twitter: @simonmcs http://uob-hpc.github.io

 References
Exploiting Spatial Information in Datasets
To Enable Fault Tolerant Sparse Matrix
Solvers, R. Hunt and S. McIntosh-Smith,
FTS, IEEE Cluster, Chicago, Sep 8th 2015

Application-Based Fault Tolerance
Techniques for Sparse Matrix Solvers,
S. McIntosh-Smith, R. Hunt, J. Price and
A. Vesztrocy, to appear in IJHPCA, 2016

61 © Simon McIntosh-Smith Twitter: @simonmcs http://uob-hpc.github.io

62

A parting thought

 Long-term	fundamental	trends	

Time

R
el

at
iv

e
im

pr
ov

em
en

t

Microprocessor performance
~55% per annum

Memory capacity
~49% per annum

(and slowing down?)

Memory bandwidth
~30% per annum

(and slowing down?)

Memory latency
<<30% per annum

We design
codes for here

We need to
design codes

for here!

 For related software and papers
See: http://uob-hpc.github.io

GPU-STREAM:
 https://github.com/UoB-HPC/GPU-STREAM
CloverLeaf:
 https://github.com/UoB-HPC/CloverLeaf-OpenMP4
TeaLeaf:
 https://github.com/UoB-HPC/TeaLeaf-OpenSrc
SNAP:
 https://github.com/UoB-HPC/SNAP_MPI_OpenCL

64 Twitter: @simonmcs http://uob-hpc.github.io

